Skip to main content

BepiColombo captures stunning Mercury images during close gravity assist flyby

 The ESA/JAXA BepiColombo mission has captured its first views of its destination planet Mercury as it swooped past in a close gravity assist flyby last night.

The closest approach took place at 23:34 UTC on October 1, 2021, at an altitude of 199 km from the planet’s surface. Images from the spacecraft’s monitoring cameras, along with scientific data from a number of instruments, were collected during the encounter. The images were already downloaded over the course of Saturday morning, and a selection of first impressions are presented here.

BepiColombo captured this view of Mercury on October 1, 2021, as the spacecraft flew past the planet for a gravity assist maneuver. The image was taken at 23:44:12 UTC by the Mercury Transfer Module’s Monitoring Camera 2, when the spacecraft was about 2418 km from Mercury.
“The flyby was flawless from the spacecraft point of view, and it’s incredible to finally see our target planet,” says Elsa Montagnon, Spacecraft Operations Manager for the mission.

The monitoring cameras provide black-and-white snapshots in 1024 x 1024 pixel resolution, and are positioned on the Mercury Transfer Module such that they also capture the spacecraft’s structural elements, including its antennas and the magnetometer boom.

Images were acquired from about five minutes after the time of close approach and up to four hours later. Because BepiColombo arrived on the planet’s nightside, conditions were not ideal to take images directly at the closest approach, thus the closest image was captured from a distance of about 1000 km.

In many of the images, it is possible to identify some large impact craters.

“It was an incredible feeling seeing these almost-live pictures of Mercury,” says Valetina Galluzzi, co-investigator of BepiColombo’s SIMBIO-SYS imaging system that will be used once in Mercury orbit. “It really made me happy meeting the planet I have been studying since the very first years of my research career, and I am eager to work on new Mercury images in the future.”

“It was very exciting to see BepiColombo’s first images of Mercury, and to work out what we were seeing,” says David Rothery of the UK’s Open University who leads ESA’s Mercury Surface and Composition Working Group. “It has made me even more enthusiastic to study the top quality science data that we should get when we are in orbit around Mercury, because this is a planet that we really do not yet fully understand.”


Although the cratered surface looks rather like Earth’s Moon at first sight, Mercury has a much different history. Once its main science mission begins, BepiColombo’s two science orbiters – ESA’s Mercury Planetary Orbiter and JAXA’s Mercury Magnetospheric Orbiter – will study all aspects of mysterious Mercury from its core to surface processes, magnetic field and exosphere, to better understand the origin and evolution of a planet close to its parent star. For example, it will map the surface of Mercury and analyze its composition to learn more about its formation. One theory is that it may have begun as a larger body that was then stripped of most of its rock by a giant impact. This left it with a relatively large iron core, where its magnetic field is generated, and only a thin rocky outer shell.

Mercury has no equivalent to the ancient bright lunar highlands: its surface is dark almost everywhere, and was formed by vast outpourings of lava billions of years ago. These lava flows bear the scars of craters formed by asteroids and comets crashing onto the surface at speeds of tens of kilometers per hour. The floors of some of the older and larger craters have been flooded by younger lava flows, and there are also more than a hundred sites where volcanic explosions have ruptured the surface from below.


BepiColombo will probe these themes to help us understand this mysterious planet more fully, building on the data collected by NASA’s Messenger mission. It will tackle questions such as: What are the volatile substances that turn violently into gas to power the volcanic explosions? How did Mercury retain these volatiles if most of its rock was stripped away? How long did volcanic activity persist? How quickly does Mercury’s magnetic field change?

“In addition to the images we obtained from the monitoring cameras we also operated several science instruments on the Mercury Planetary Orbiter and Mercury Magnetospheric Orbiter,” adds Johannes Benkhoff, ESA’s BepiColombo project scientist. “I’m really looking forward to seeing these results. It was a fantastic night shift with fabulous teamwork, and with many happy faces.”

BepiColombo’s main science mission will begin in early 2026. It is making use of nine planetary flybys in total: one at Earth, two at Venus, and six at Mercury, together with the spacecraft’s solar electric propulsion system, to help steer into Mercury orbit. Its next Mercury flyby will take place on June 23, 2022.

Comments

Popular posts from this blog

Wildlife conservation on ice: frozen zoos to save animals

  On the edge: Disease and habitat loss is decimating wild amphibian populations globally, with more than 200 species needing urgent intervention through captive breeding, says Dr. Simon Clulow. In a south-eastern suburb in Melbourne, there’s a zoo. It has no visitors, and there are no animals anywhere inside it. Rather, the Australian Frozen Zoo houses living cells and genetic material from Australian native and rare and exotic species. This place, and others like it, could be a big part of the future of conservation. Department of Biological Sciences’ Simon Clulow and his colleagues make the case for ‘biobanking’ in a recent piece in Conservation Letters. Clulow is keen to stress that this doesn’t mean getting rid of conventional zoos or captive breeding programs. “Captive breeding has had some wonderful successes, and there will always be a huge place for it,” he says. PhD student and lead author Lachlan Howell agrees. “It was captive breeding that brought the giant panda back from

Insects are terrified of fish

ScienceDaily   — The mere presence of a predator causes enough stress to kill a dragonfly, even when the predator cannot actually get at its prey to eat it, say biologists at the University of Toronto. "How prey respond to the fear of being eaten is an important topic in ecology, and we've learned a great deal about how these responses affect predator and prey interactions," says Professor Locke Rowe, chair of the Department of Ecology and Evolutionary Biology (EEB) and co-principal investigator of a study conducted at U of T's Koffler Scientific Reserve. "As we learn more about how animals respond to stressful conditions -- whether it's the presence of predators or stresses from other natural or human-caused disruptions -- we increasingly find that stress brings a greater risk of death, presumably from things such as infections that normally wouldn't kill them," says Rowe. Shannon McCauley, a post-doctoral fellow, and EEB professo

Nasa’s Mars perseverance “Kodiak” moment – Jezero Crater’s Lake is more complicated and intriguing than thought

The escarpment the science team refers to as “Scarp a” is seen in this image captured by Perseverance rover’s Mastcam-Z instrument on April 17, 2021. Credit: NASA/JPL-Caltech/ASU/MSSS Pictures from NASA’s latest six-wheeler on the Red Planet suggest the area’s history experienced significant flooding events. A new paper from the science team of NASA’s Perseverance Mars rover details how the hydrological cycle of the now-dry lake at Jezero Crater is more complicated and intriguing than originally thought. The findings are based on detailed imaging the rover provided of long, steep slopes called escarpments, or scarps in the delta, which formed from sediment accumulating at the mouth of an ancient river that long ago fed the crater’s lake. The images reveal that billions of years ago, when Mars had an atmosphere thick enough to support water flowing across its surface, Jezero’s fan-shaped river delta experienced late-stage flooding events that carried rocks and debris into it from the hi