Skip to main content

Part of the universe’s missing matter found thanks to very large telescope


 


  • Galaxies exchange matter with their external environment thanks to galactic winds.
  • The MUSE instrument from the Very Large Telescope has, for the very first time, mapped the galactic wind that drive these exchanges between galaxies and nebulae.
  • This observation led to the detection of some of the Universe’s missing matter.

Galaxies can receive and exchange matter with their external environment thanks to the galactic winds created by stellar explosions. Thanks to the MUSE instrument[1] from the Very Large Telescope at the ESO, an international research team, led on the French side by the CNRS and l’Université Claude Bernard Lyon,[1,2] has mapped a galactic wind for the first time. This unique observation, which is detailed in a study published in MNRAS on September 16, 2021, helped to reveal where some of the Universe’s missing matter is located and to observe the formation of a nebula around a galaxy.

Galaxies are like islands of stars in the Universe, and possess ordinary or baryonic matter, which consists of elements from the periodic table, as well as dark matter, whose composition remains unknown. One of the major problems in understanding the formation of galaxies is that approximately 80% of the baryons[3] that make up the normal matter of galaxies is missing. According to models, they were expelled from galaxies into intergalactic space by the galactic winds created by stellar explosions.

Observation of a part of the Universe thanks to MUSE Left: Demarcation of the quasar and the galaxy studied here, Gal1. Center: Nebula consisting of magnesium represented with a size scale Right: superimposition of the nebula and the Gal1 galaxy.

An international team,[4] led on the French side by researchers from the CNRS and l’Université Claude Bernard Lyon 1, successfully used the MUSE instrument to generate a detailed map of the galactic wind driving exchanges between a young galaxy in formation and a nebula (a cloud of gas and interstellar dust).

The team chose to observe galaxy Gal1 due to the proximity of a quasar, which served as a “lighthouse” for the scientists by guiding them toward the area of study. They also planned to observe a nebula around this galaxy, although the success of this observation was initially uncertain, as the nebula’s luminosity was unknown.

The perfect positioning of the galaxy and the quasar, as well as the discovery of gas exchange due to galactic winds, made it possible to draw up a unique map. This enabled the first observation of a nebula in formation that is simultaneously emitting and absorbing magnesium—some of the Universe’s missing baryons—with the Gal1 galaxy.

This type of normal matter nebula is known in the near Universe, but their existence for young galaxies in formation had only been supposed.

Scientists thus discovered some of the Universe’s missing baryons, thereby confirming that 80–90% of normal matter is located outside of galaxies, an observation that will help expand models for the evolution of galaxies.

Notes

  1. MUSE, which stands for Multi Unit Spectroscopic Explorer, is a 3D spectrograph designed to explore the distant Universe. The Centre de recherché astrophysique de Lyon (CNRS/Université Claude Bernard-Lyon 1/ENS de Lyon) led its construction.
  2. Researchers from the Centre de recherché astrophysique de Lyon (CNRS/Université Claude Bernard Lyon 1/ENS de Lyon), the Galaxies, étoiles, physique, instrumentation laboratory (CNRS/Observatoire de Paris – PSL), and the Institut de recherché en astrophysique et planétologie (CNRS/Université Toulouse III – Paul Sabatier/CNES) participated in the project.
  3. Baryons are particles consisting of three quarks, such as protons and neutrons. They make up atoms and molecules as well as all visible structures in the observable Universe (stars, galaxies, galaxy clusters, etc.). The “missing” baryons, which had never before been observed, must be distinguished from dark matter, which consists of non-baryonic matter of an unknown nature.
  4. Including scientists from Saint Mary’s University in Canada, the Institute for Astrophysics at the University of Potsdam in Germany, Leiden University in the Netherlands, the University of Geneva and the Swiss Federal Polytechnic School in Zurich, the Inter-University Centre for Astronomy and Astrophysics in India, and the University of Porto in Portugal.
Reference: “MusE GAs FLOw and Wind (MEGAFLOW) VIII. Discovery of a Mgii emission halo probed by a quasar sightline” by Johannes Zabl, Nicolas F Bouché, Lutz Wisotzki, Joop Schaye, Floriane Leclercq, Thibault Garel, Martin Wendt, Ilane Schroetter, Sowgat Muzahid, Sebastiano Cantalupo, Thierry Contini, Roland Bacon, Jarle Brinchmann and Johan Richard, 28 July 2021, Monthly Notices of the Royal Astronomical Society. DOI: 10.1093/mnras/stab2165

Comments

Popular posts from this blog

Watch as Patrick Stewart Recites a Poem with a Yorkshire Dialect

In a scene from TOWN with Nicholas Crane, Patrick Stewart, of Star Trek and X-men fame,  gets nostalgic over his childhood and recites a poem in his native Yorkshire dialect. His mother and aunt would recite the poem around Christmas time every year which is probably why he still remembers it many years later. Stewart was born in Mirfield - a small town in West Yorkshire England.

Wildlife conservation on ice: frozen zoos to save animals

  On the edge: Disease and habitat loss is decimating wild amphibian populations globally, with more than 200 species needing urgent intervention through captive breeding, says Dr. Simon Clulow. In a south-eastern suburb in Melbourne, there’s a zoo. It has no visitors, and there are no animals anywhere inside it. Rather, the Australian Frozen Zoo houses living cells and genetic material from Australian native and rare and exotic species. This place, and others like it, could be a big part of the future of conservation. Department of Biological Sciences’ Simon Clulow and his colleagues make the case for ‘biobanking’ in a recent piece in Conservation Letters. Clulow is keen to stress that this doesn’t mean getting rid of conventional zoos or captive breeding programs. “Captive breeding has had some wonderful successes, and there will always be a huge place for it,” he says. PhD student and lead author Lachlan Howell agrees. “It was captive breeding that brought the giant panda back f...

California’s surge of large wildfires: a multi-dimensional fire challenge

September 21, 2021  Accumulating fuels and rising populations are contributing to California’s large, destructive fires. Climate change has helped fuel California’s surge of unusually large and destructive fires by exacerbating heat waves and droughts , but climate is not the only factor contributing to the surge. More than a century of fire suppression has caused excessive amounts of dead trees, leaf litter, and dried brush to build up in forests. Meanwhile, California’s increasing population means that many more people now live and work in areas that are prone to fire. The consequences of all the fires are remarkable, even from space. The false-color image at the top of the page shows burn scars left by large fires that burned in recent years, including the two largest incidents on record in California: the August fire complex and the Dixie fire . The image was captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite on September 21, 2021. ...